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SUMMARY 
The reduction-to-periodicity method using the pseudospectral fast Fourier transform (FFT) technique is 
applied to the solution of non-periodic problems, including the two-dimensional incompressible 
Navier-Stokes equations. The accuracy of the method is explored by calculating the derivatives of given 
functions, one- and two-dimensional convective4iffusive problems, and by comparing the relative errors 
due to the FFT method with a second-order finite difference (FD) method. Finally, the two-dimensional 
Navier-Stokes equations are solved by a fractional step procedure using both the FFT and the FD methods 
for the driven cavity flow and the backward-facing step problems. Comparisons of these solutions provide a 
realistic assessment of the FFT method. 
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1 .  INTRODUCTION 

In this paper we discuss a numerical technique for solving partial differential equations in non- 
periodic domains by the use of the pseudospectral method. This work was motivated by the need 
to develop a time-dependent incompressible Navier-Stokes solver with non-periodic inflow/out- 
flow boundary conditions involving wave propagation problems. In such problems the use of 
Chebyshev expansions along the streamwise direction provides an accurate solution procedure at 
the cost of imposing very stiff viscous time step restrictions. Note that along the streamwise 
direction, time-explicit methods can be efficiently used owing to the absence of any sharp gradients 
at inflow/outflow boundaries. In flows bounded by solid walls, however, it is expected that the 
spectral Chebychev method will be superior for the same number of grid points and the same 
operation count. The goal of this paper is to provide a direct comparison of the reduction-to- 
periodicity method with a widely used second-order finite difference method in an effort to isolate 
the advantages/shortcomings of the reduction-to-periodicity method. 

In periodic domains the use of the pseudospectral fast Fourier transform technique was 
instigated by the work of Or~zag , ' -~  and since then the method has been extensively used in 
solving multidimensional fluid dynamics problems with periodic boundary conditions. The article 
by Orszag and Israeli4 provides other references and an introduction to the subject. The idea of 
polynomial subtraction for the purpose of satisfying non-periodic boundary constraints was 
introduced by Lanczos5 and later developed by Gottlieb and Orszag.6 In one-dimensional mode1 
problems the well known Gibbs phenomenon that appears at the boundaries when such methods 
are used with non-periodic boundary conditions has been shown to be suppressed by the use of 
simple polynomials.'* * In Reference 8 the accuracy of the reduction-to-periodicity method is 

0271-209 1/89/101235-33$16.50 
0 1989 by John Wiley & Sons, Ltd. 

Received 8 June 1988 
Revised 27 October 1988 



1236 S. BIRINGEN AND K. H. KAO 

found to be the same as a Chebyshev pseudospectral method when used in one-dimensional 
atmospheric diffusion problems. An application of this method to the solution of the 
Navier-Stokes equations with non-periodic inflow/outflow boundary conditions is given in 
Reference 9, where the major focus was to modify the existing periodic spectral codes for use in 
non-periodic domains. Consequently, the implicit Crank-Nicolson method implemented for the 
viscous terms dictated the use of only low-order (first-order) polynomials. It should be noted that, 
according to Roache,' the reduction-to-periodicity technique has a higher accuracy than fourth- 
order finite difference methods when used with high-order polynomials. In this paper we expand 
on these ideas and test this method extensively in solving various model problems. Of particular 
concern is to determine whether the advantages that may be gained by the reduction-to- 
periodicity method are offset by the extra computational time due to the additional log N factor in 
the operation count. From hereon we will refer to the reduction-to-periodicity method as the FFT 
method and will abbreviate the second-order finite difference method as the FD method. 

The algorithmic formulation of the FFT method as well as the numerical procedures used for 
the solution of several model problems are described in Section 2. Section 3 summarizes the results 
for the model problems and provides direct comparisons between the FFT and FD methods. In 
Section 4 we give details of the fractional step method and the direct solution procedure used for 
the numerical integration of the two-dimensional time-dependent Navier-Stokes equations. The 
boundary/initial conditions for the velocity and pressure equations are also summarized. This 
section is also concerned with the driven cavity and backward-step problems and with direct 
comparisons between the FFT and FD methods. Finally, some concluding remarks are given in 
Section 5. 

2. PROBLEM FORMULATION 

An algorithmic formulation of the FFT technique and the time-stepping procedures used to solve 
several model equations are presented below. 

2.1. The pseudospectral method 

For a periodic function F(x) which is specified by N values on equally spaced grid points, 

x, = nAx, n = 1, 2,. . . , N ,  (1) 
the corresponding values of the function F,, = F(x,,) may be expressed by the finite Fourier series 

the inverse transform of which gives 
N 

f ( k , )  = (1/N) 1 F,, exp( --ik,x,,), k, = 2nl/NAx, (3) 

where k, is the wave number along the x-direction. The pseudospectral approximation for the 
derivatives of F, at each x, can be obtained from equation (2) as 

n = l  

N 

I = 1  
aF/ax,, = C [f(k,)ik,] exp(ik,x,,). (4) 

Since, at the boundaries, the convergence rate of this expansion depends on the boundary 
conditions (i.e. discontinuities of F(x)), we may subtract certain polynomial functions from 
F(x) so that the residual will be a periodic function. Consequently, following the notation of 
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Reference 8, we can write 

where F J x )  and F , ( x )  correspond to polynomial and periodic parts of the function F ( x )  
respectively. From equation (4) the derivatives of F ( x )  can be obtained as 

F ’ ( x )  = F b ( x )  + F : ( x ) ,  
F ” ( x )  = Fb’(x) + F:‘(x).  

Fp(x) = F ( 0 )  + a,x + a2x2 + a3x3 + a4x4 + a5x5 

(6) 

(7) 

In this work we chose Fp(x)  as a fifth-order polynomial such that 

in the solution domain 0 Q x 6 L. The coefficients of this polynomial can be written in terms of 
the boundary values 

DO = F ’ (  L )  - F’(O), 
D ,  = F”(L)  - F”(O), 
D2 = F”’(L) - F”’(O), 
D ,  = F””( L )  - F””(O), 
D4 = ,””’( L )  - F””’(0), 

so that one obtains 

as = (1/120L)D4, 
a4 = (1/24L)D3 -$a,.!., 

a3 = ( l /6L)D2 - 2 a 4 L - 9 a , L 2 ,  

a ,  = (1/2L)D, - 3a3L - 2a4L2 - $a,L3, 
a ,  = ( l /L )D,  - a2L - a3L2 - a4L3 - a,L4. 

(9) 

With the choice of a fifth-order polynomial, the method formally becomes fifth-order accurate 
near the boundaries and sixth-order accurate in the interior. 

An algorithm for the evaluation of the first and second derivatives of F ( x )  can be written as 
follows. 

(1) Evaluate the derivatives of F ( x )  at the boundaries either by one-sided differences or, if the 

(2) Calculate the coefficients ul-as from equation (9). 
(3) Calculate the derivatives of the periodic part F r ( x )  from equations ( 3 )  and (4). 
(4) Calculate the derivatives of the polynomial part F J x )  by differentiating equation (7). 
(5 )  Finally, the first and second derivatives of F ( x )  can be obtained from equation (6). 

function is known, directly from the function itself. 

2.2. Time-stepping methods 

The accuracy of the FFT method will be investigated by comparing the local relative error 
(defined as the difference between the exact solution to the problem and the numerical solution) 
of this scheme with a corresponding second-order accurate F D  method in several 
convective-diffusive model problems. In particular, for extensions to multidimensional time- 
dependent fluid dynamics problems, we focus on second-order time discretization methods such 
as the Adams-Bashforth method, the Crank-Nicolson method and the compact Runge-Kutta 
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method. We also use the first-order Euler explicit method for comparison purposes. In order to 
summarize each of these methods, we will use a model equation of the form 

&/at = G(u,x,t) .  (10) 

2.2.1. Adams-Bashforth method. The explicit second-order Adams-Bashforth method ad- 
vances equation (10) in time according to 

U" + (At/2)[3G" - G"- '1, (1 1) u n + l  = 

and for the first time step we can use 
u " + l  - - u n + A t  G". 

Note that owing to the weakly divergent amplification factor, 1 + O(At2),  this method is 
unconditionally unstable for the advection equation'O. but becomes conditionally stable with 
the inclusion of a viscous term. Because the instability is weak, the method has been successfully 
used for long integration times in incompressible flow calculations. 

2.2.2. Crank-Nicolson method. The Crank-Nicolson method is a second-order implicit 
scheme, This method advances equation (10) in time according to 

u"+' = u " + ( A ~ / ~ ) [ G " + '  + G " ] .  (13) 
Thus finding the solution at time step n + 1 requires the solution of a set of linear algebraic 

equations with a tridiagonal coefficient matrix. The method is unconditionally stable and 
therefore allows the use of much larger time steps than is possible with explicit methods. We use 
the Crank-Nicolson method in two-dimensional problems along directions in which the FFT 
method is not employed. 

2.2.3. Compact Runge-Kutta method. A fully explicit, third-order, low-storage Runge-Kutta 
method was given by Williamson.'2 The algorithm reads 

H ,  = At G,, 

u1 = uf) + f H , ,  
H2 = At GI - $Hl, 
u2 = u1 +BH2, 

u n + l  = u2 +AH3. 
H 3  = At G2 - B H 2 ,  

This high-order, low-storage scheme requires two arrays per variable and could be used either 
to increase the accuracy of the integration or to allow a larger time step. For convective problems 
the scheme is found to be stable for Courant numbers C N  < 0.2.13 

3. DISCUSSION OF RESULTS FOR MODEL PROBLEMS 

In this section a discussion of the results for several model problems is presented. The accuracy of 
the results for a solution function F is defined in terms of the local relative error 
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3.1. Simple function derivatives 

method in evaluating function derivatives. In particular we consider a function given by 
In the first example we use a damped sine wave function7 to investigate the accuracy of the FFT 

F(x) = eax sin(2nbx), (16) 
with a = -2, b = $ and 0 d x d 1.  From equation (16) expressions for F'(x) and F"(x) can be 
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Figure 1. (a, b) 



1240 S. BIRINGEN AND K. H. KAO 

0 1  1 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 

Figure 1 .  Solution profiles of the damped sine function: (a) exact function ( x), first derivative (O), second derivative (+); 
(b) local relative errors for the first derivative, FFT ( x ), FDM (+); (c) local relative errors for the second derivative, 

FFT ( x ), FDM (+)  (33 mesh) 

derived as 

F'(x )  = esx[a sin (27cbx) + 27cb cos (27cbx)I 
F"(x)  = 47cab eax cos (27cbx) + esx(a2 - 4n2b2) sin (2nbx) .  (17) 

Figure l(a) shows the exact results for the function itself and its first and second derivatives. In 
Figure l(b) the local relative errors for the FFT and FD methods are compared. As evident from 
this figure, the FFT method decreases by about three orders of magnitude in the region 
035 < x < 0.65 and provides some improvement over the FD method when x -+ 0 and x -+ 1, i.e. 
close to the boundaries, where the accuracy of the FFT method should be expected to decrease. 
However, for the second derivative, Figure l(c), the FFT method yields only marginal improve- 
ment for most of the solution domain. In a similar test problem, the improvement of accuracy 
obtained by the FFT method was found to remain several orders of magnitude less than a 
corresponding true spectral method using Chebyshev polynomials with the same number of 
collocation points.8 

3.2. One-dimensional diffusion equation 

equation reads 
Consider the unsteady one-dimensional heat conduction problem for which the governing 

The initial conditions are given as 

T = O ,  t = 0 ,  x < l ,  
T = l ,  t = 0 ,  X = Z ,  
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(a) 

with the boundary conditions 

T = O ,  t > 0 ,  x = O ,  
T=l, t > 0 ,  x = n .  

The exact solution for this problem reads 
m 

1 
T(x, t) = x + I( - 1)”(2/nn) sin (nnx) exp( - n2n2a2t). 
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Figure 2. Local relative errors for the solutions of the 1D diffusion equation at t = 200000: FFT ( x ); FDM (0); (a) Euler 
explicit scheme; (b) compact low-storage Runge-Kutta scheme (129 mesh) 
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Note that with the high-order polynomials, the FFT method requires an explicit numerical 
scheme for time discretization. For simplicity we use the Euler explicit scheme 

T"" = T" + ci2At(a2Tfax2)". (22) 
In Figure 2(a) results are presented at t = 200000 indicating improved accuracy for the FFT 

method over most of the solution domain up to two orders of magnitude. Further improvement in 
accuracy is obtained by the use of the compact Runge-Kutta method, as shown in Figure 2(b). 
Accordingly, an error decrease of several orders of magnitude is obtained by the FFT method as 
compared to Euler time advancement, whereas the FD method is almost invariant to time 
discretization. 

3.3. One-dimensional convective-difusion equation 

The one-dimensional non-linear convective-diffusion equation is given as 

au au a2u 

at ax ax2 
- 4- u- = v - ,  

with v as the kinematic viscosity. This equation is known as the one-dimensional non-linear 
Burger's equation. An exact solution for v = 1, given Reference 14, will be considered. This reads 

- 2 sinh (x) 
cosh (x) - e-' . u(x , t )  = 

For the computational domain -6  < x < 6 we prescribe the initial conditions as 

~ = 2 ,  t = 0 ,  ~ = - 6 ,  
u = -2, t = 0, x = 6 ,  

U 
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Figure 3. Exact solutions of the ID Burger's equation at different time levels 
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and the time-dependent boundary conditions are 

-2  sinh(-6) 
cosh (- 6) - e C’ 

U =  t > 0 ,  X =  - 6 ,  

1 
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Figure 4. Relative errors for the solution of the 1D Burger’s equation using the Adams-Bashforth method in both the 
convective and diffusion terms: (a) t = 0.2; (b) t = 0.5; (c) t = 1.0; (d) t = 2.0 (33 mesh): -, FFT;---, FDM 

Figure 3 presents the closed-form solutions. The numerical solutions were obtained by applying 
the Adams-Bashforth scheme to both the convective and diffusion terms. Results for the FFT and 
F D  methods are shown in Figures 4 and 5 at different times, using 33 and 129 grid points 
respectively; as expected, for both methods improved accuracy is obtained with increasing grid 
points. This mesh refinement study provides some estimates of the cost of increasing accuracy for 
the FFT method. First, a comparison of Figures q a d )  with the corresponding Figures 5(ad)  
illustrates that the FD method displays an error decrease by a factor of N-’  in accordance with its 
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-1 - 

second-order formal accuracy. The error decrease that is shown by the FFT method varies 
between roughly N - '  (t  = 0.5) and N - 7 / 2  ( t  = 2.0), approaching the error decrease of a fourth- 
order finite difference method. However, since the cost of a fourth-order finite difference second 
derivative will be about 3.0 (for a 32 mesh) to 4.5 (for a 128 mesh) times less expensive than the FFT 
method, the accuracy gained by the FFT method at large integration times does not seem to be 
cost-efficient for this problem. 
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Figure 5. (a, b) 
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Figure 5. Relative errors with the same computational scheme as in Figure 4: (a) t = 02; (b) I - 0.5; (c) t = 1.0; (d) t = 2 4  
(129mesh); - -  -, Fm,-- , F D M  

We investigated the influence of time discretization on solution accuracy of the FFT method by 
implementing several procedures to solve this strongly diffusive problem using 129 grid points. 
Figure 6 shows results for three types of time-stepping techniques at various times using only the 
FF'T method. The techniques we used are: (i) Euler explicit (EE) on both the convective and 
diffusion terms; (ii) Adams-Bashforth (AB) on the convective terms and EE on the diffusion term; 
and (iii) compact Runge-Kutta (RK) on the convective term and EE on the diffusion term. It is 
obvious from these figures that all the methods considered have the same relative error except at 
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later times, i.e. at t = 2, where scheme (ii)  provides slightly improved accuracy in the central region 
of the solution domain. Consequently, this time discretization study leads to the idea that 
significant improvement in solution accuracy will not be gained via time-stepping procedures for 
the convection-diffusion equation. 
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1248 

- 1  

-2 - 

-3 - 
n 8 - 4 -  
Ly: 
W 
v 
0 -3 - s 

-6 - 

-7 - 
-8 t 

S. BIRINGEN AND K. H. KAO 

(4 
I 

- 1  

-2 

-3 

n 
U 

0: 
W W 

g -4 

8 -5 
-I 

-6 

-7 

-8 

-4 -2 0 2 4 -6 

X 

-4 -2 0 2 4 6 -6 

X 

Figure 6 .  Relative error for various schemes for the solution of the 1D Burger's equation with FFT method: (a) t = 0.2; 
(b ) t  = 0-5; (c)t  = 1.0; ( d ) t  = 2.0 (129 mesh); -, (i);---, (ii);-..-, (iii) as described in the text 

3.4. Two-dimensional digusion equation 

diffusion equation 
In this section we extend the test problems to two-dimensional domains and consider the 

aT a2T a2T 
at (27) 
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We investigate the model problem given in Reference 15 in the domain 0 d x < 1 and 

(28) 

0 < y < 00, for which the initial condition is 

T(x,y,O) = sin (2nx) exp ( - y'). 

The time-dependent boundary conditions are 

T(x, m,t) = 0, 

exp( - h 2 v t )  m' T(x,O,t) = sin (2nx) 

T(O,y,t) = 0, 
T( l ,y,t) = 0. 

The analytical solution for this problem is 

exp( -4n2vt) 
T (x , y , t )  = sin(2nx) m t 4 v t )  exp ( i&>. 

In this problem, second-order central differences are used along the y-direction and, owing to 
steep gradients along this co-ordinate, we use a stretching function of the form 

where y j  is defined as the y-co-ordinate at thejth grid point of the total N grid points, and Ay is the 
first interval at the boundary. Along the x-direction we implement either the FFT method or the 
FD method. 

The exact solution at  t = 0.5 is shown in Figure 7, while Figures 8-10 display the results using 
different schemes, all of which were computed with At = 0.0005. It can be observed that the 
Adams-Bashforth method (Figure 8) reduces the local accuracy when it is employed for the 
diffusion terms. It is also interesting to note that the Euler explicit method applied in both 
the streamwise and spanwise directions (Figure 9) is the most accurate scheme for this two- 
dimensional diffusion equation when used with the FFT scheme. For wall-bounded problems, 

F / I I 
I /  , I 

Y 

Figure 7. Exact solution of the 2D diffusion equation at t = 05 (129 x 129 mesh) 
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Figure 8. Relative errors (log error) for the 2D diffusion equation at t = 0.5 using the Adams-Bashforth method in both 
diffusion directions: (a) F F T  (b) FDM (129 x 129 mesh) 

strong viscous effects along directions perpendicular to the wall impose very stiff limitations on 
allowable At in explicit methods. For such problems, the implicit Crank-Nicolson method 
(Figure 10) will be more advantageous. In all the cases, both methods indicate roughly comparable 
accuracy and no significant error attenuation is indicated by the FFT method in comparison with 
the FD method. 

4. NAVIER-STOKES SOLUTIONS 

In the preceding section the FFT technique was used to numerically integrate several 
convective-diffusive problems and, in general, provides comparable accuracy with a second-order 
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Figure 9. Relative errors (log error) for the 2D diffusion equation at t = 0.5 using the Euler explicit method in both 
directions: (a) FFT; (b) FDM (129 x 129 mesh) 

finite-difference method. In this section we use this method for the solution of the two- 
dimensional, time-dependent, incompressible Navier-Stokes equations. We consider the driven 
cavity flow and the backward-facing step as model problems. For these problems the x-directional 
derivatives are computed by either the FFT or the FD method with non-periodic inflow/outflow 
or no-slip boundary conditions. The y-directional derivatives are always discretized by the FD 
method. 

We consider the two-dimensional, incompressible, time-dependent Navier-Stokes and the 
continuity equations non-dimensionalized by the characteristic length and velocity scales, L and 
U,, respectively: 

ap 1 a2ui 
(U iU j )  - - + --, aui a 

at 8% axi Reaxjaxj 
_ -  - -- 
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Figure 10. Relative errors (log error) for the 2D diffusion equation at t = 0.5 using the Euler explicit method in streamwise 
and the Crank-Nicolson method in cross-stream directions: (a) FFT; (b) FDM (129 x 129 mesh) 

aUi 
axi - _  - 0. 

We define 
a UOL Li = - -(uiuj) and Re = -. 

ax V 

(33) 

(34) 

We implement the second-order explicit Adams-Bashforth scheme for the convective terms, the 
Euler explicit method for the streamwise ( x )  diffusion term and the second-order implicit 
Crank-Nicolson method for the cross-stream ( y )  diffusion term. Using the fractional step 

we write the first step for the intermediate quantity iii: 
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from which one obtains 

At a2u; At a2ul +--- + i i i =  u;+-(3L;-L;-')+----- = RHS;. (36) 
At a2Ci At 

2Re ax,ax2 2 Reaxlax, 2Redx28x2 
We can now apply the FD method to evaluate the second derivative for the cross-stream diffusion 
term: 

The above tridiagonal equation can be solved efficiently for the quantity 2,. By inspecting the 
original equation (32), we can also obtain the expression 

un+l-u;  3 It"-' 1 a Z u ;  I P U ; + ~  i a2u; apn+' 
i = -Lf - - -I--- +-- +---- 

At 2 2 l  Reaxlax,  2Reax2ax2 2Reax,ax2 ax, - (38) 

Subtracting equation (35) from (38) yields 

At (39) 

Taking the divergence of both sides of equation (39), we obtain 

After enforcing the continuity equation, i.e. 

equation (40) gives 
v . u ; + 1 =  0, 

v i i i  

At 
- - - vt@n+ 1 

From (42) we can solve for W"' '; then using (&D/axi)'" in equation (39), u;+' is obtained. The 
spatial discretization is done on a staggered mesh following Harlow and Welch;18 a schematic 
diagram is given in Figure 11. 

Figure 11. Schematic diagram of the staggered grid 
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At the solid walls, boundary conditions for the velocities parallel to the walls are obtained using 
averaging, which results in 

00 = 2 4  - u , .  (43) 

It  is also possible to use a higher-order one-sided derivative at this boundary which can be 
written as 

uo = $ ( u 2  - 66, + 80,). (44) 
In equations (43) and (44), u ,  and u2 are the interior velocities and t‘, is the wall velocity 

(Figure 12). Boundary conditions for the velocities normal to the wall can then be obtained by 
satisfying continuity on the wall cell shown in Figure 13. For a stationary wall this gives 

u() = u , .  (45) 
Boundary conditions for 0 follow directly from the normal momentum equation evaluated at 

the boundaries. The intermediate boundary conditions for velocities with O(At’) accuracy can be 
obtained following the analysis of Kim and Moin” as 

iii = u: + 1 + Ata4n/axi. (46) 
It is interesting to note that even the zeroth-order boundary condition, iii = u ; +  l ,  provides a 

consistent scheme for the test problems considered in this work. Finally, the inflowfoutflow 
boundary conditions of the back-step problem using the FFT method require the evaluation of 
the product term a(uu) /ax  at the o-nodes. This was done by bilinear interpolation of u at the 
interior cells and by satisfying continuity on the boundaries. 

Figure 12. Boundary conditions for the v-velocity 

Figure 13. Boundary conditions for the u-velocity 
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The solution of the Poisson equation for Q, was obtained by using a direct band solver for the 
five-point finite difference operator. For this purpose we used the IMSL subroutines LUDAPB 
and LUREPB on the VAXG system and the NASA/Langley library subroutine Q4BAND on the 
VPS32 vector processor. Since the coefficient matrix is constant, the LU decomposition is done 
only at the first time step, resulting in substantial savings in CPU time. The feasibility of this direct 
solution procedure for moderate-size systems has been documented in References 19 and 20. 

In the remainder of this section we present a direct comparison of the FD and FFT methods 
when they are used to evaluate the x-directional derivatives in the fractional step procedure 
outlined above. As model problems, we consider the shear-driven cavity and the back-facing step; 
note that owing to the existence of solid walls along the x-direction, the shear-driven cavity 
presents a very stiff test case for the FFT method. 

4.1. Flow in a driven cavity 

The first test case for the comparison of the FD and FFT methods is the shear-driven cavity, the 
geometry and boundary conditions of which are given in Figure 14. Note that the flow is driven by 
the downward motion of the right-hand wall. Once the motion occurs, a primary vortex is formed 
near the centre region of the cavity. At Re = 1 the flow is almost symmetric with respect to the 
centreline. As the Reynolds number increases, the vortex centre moves towards the right lower 
corner, and with further increase in Reynolds number it moves back towards the cavity centre. In 

Upvd 

i 

u=o 
v=- 1 

U=V4 

Figure 14. Geometry of the driven cavity problem 

Table I. Streamfunction at centre of primary vortex for different Reynolds numbers 

Re 
Present Present 

FFT FD Ref. 17 Ref. 21 Ref. 22 

1 
(mesh) 
100 
(mesh) 
400 
(mesh) 
lo00 
(mesh) 

- 0.099 1 
33 x 33 
-0.102 
33 x 33 
-0.109 
33 x 33 
-0.105 
33 x 33 

- - 0099 - 0099 
33 x 33 
-0102 -0.103 -0.103 
33 x 33 65 x 65 129 x 129 

33 x 33 65 x 65 257 x 257 

33 x 33 97 x 97 129 x 129 

65 x 65 

-0.107 -0.1 12 -0.114 

-0.102 -0.1 16 -0118 

-0.100 
121 x 121 

-0.103 
121 x 121 

-0.1 13 
141 x 141 

141 x 141 
-0.116 
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Table I we list the values of the streamfunction (obtained by integrating the calculated velocity 
field) at the centre of the primary vortex for various Reynolds numbers. The present results are 
compared with those of References 17,21 and 22 and remain within a few percent of these high- 
resolution computations up to Re = 400 in spite of the lower resolution (and no mesh stretching) 
employed in this work. At Re = 1000 the effect of low mesh resolution becomes pronounced and 
the value of the streamfunction at the vortex centre diverges from the high-resolution simulations. 
For this quantity the improvement gained by the FFT method is only marginal, e.g. one obtains a 
typical relative error of 9.5% for the FFT method compared with 12.1% for the FD method. 

In Figures 15 and 16 we present streamfunction contours at several values of the Reynolds 
number for the F D  and FFT methods respectively. For both sets of results the locations of the 

(4 (4 
Figure 15. Streamfunction contours for the driven cavity problem, FDM results: (a) Re = 1; (b) Re = 100, (c) Re = 400; 

(d) Re = lo00 
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(4 (4 
Figure 16. Streamfunction contours for the driven cavity problem, FFT results: (a) Re = 1; (b) Re = 100, (c) Re = 400, 

(d)Re = loo0 

primary vortex centres as well as the apparent size of the secondary corner vortices compare very 
favourably with the results of References 17,21 and 22. In Figures 17 and 18 vorticity contours are 
presented for the FD and FFT methods respectively. Note that since vorticity is a higher-order 
quantity, it is expected to be a more faithful indicator of numerical accuracy than velocity. At low 
Reynolds numbers the two sets of results essentially duplicate each other, but at higher Reynolds 
numbers, e.g. at Re = 400 and 1O00, the FFT method displays strong oscillatory behaviour, 
especially in the vicinity of the right lower corner, which is the critical point for this flow. This 
suggests that either the FFT method requires a larger number of grid points for comparable 
accuracy or that the no-slip boundary conditions are not adequately resolved by the polynomial 
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Figure 17. Vorticity contours for the driven cavity problem, FDM results: (a) Re = 1; (b) Re = 100; (c) Re = 400; 
(d) Re = lo00 

technique (a full discussion of wiggles appearing in numerical solutions is given in Reference 23). 
These results are at some variance with Roache’s’ findings, since he reports good results for the 
driven-cavity problem using the FFT method at low Reynolds numbers. In Figures 19 and 20 
pressure contours for the FD and FFT methods are given, indicating strong similarity between the 
results (and no wiggles) except for several zero-level contours at Re = 400 and 1OOO. Finally, 
Figures 21 and 22 present profiles of u-velocity at the cavity midplane, confirming the strong 
similarity between the FD and FFT methods for these low-order quantities. 
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Figure 18. Vorticity contours for the driven cavity problem, FFT results: (a) Re = 1; '(b) Re = 100; (c) Re = 400, 
(d) Re = 10oO 

4.2. Flow over a backward-facing step 

In this section we summarize the results for the back-facing step problem, which is a frequently 
used test case for incompressible flow solutions. In Figure 23 a schematic diagram of the problem 
and the boundary conditions employed in this work are provided. At the inflow boundary a 
parabolic velocity profile is prescribed and the outflow boundary is located at a distance 30 h 
downstream of the step. Here h is the step height and the Reynolds number is defined in terms of 2h 
and $U, where U is the maximum inflow velocity. Computations were performed on a 
33 x 129 uniform mesh with zero initial conditions, and steady state solutions were obtained by 
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Figure 19. Pressure contours for the driven cavity problem, FDM results: (a) Re = 100; (b) Re = 400; (c) Re = lo00 

marching in time until convergence. It should be noted that since the major goal of this 
computation is to provide a means of comparison between the FD and FFT methods, we have not 
found it necessary to conduct a mesh refinement study. However, initial numerical experiments 
indicated an equally poor performance for both methods on a 33 x 65 mesh. 

The results of this investigation concerning the reattachment length x, are summarized in 
Table 11, which also furnishes comparisons with experimental measurementsz4 and other 
computational studies.17* 24 It is interesting to note that for both Re = 267 and Re = 467 
the results are identical and are within a few per cent of the high-resolution computations of 
Reference 17 as well the measurements of Reference 24. 
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Figure 20. Pressure contours for the driven cavity problem, FFT results: (a) Re = 100, (b) Re = 400, (c) Re = loo0 

Table 11. Reattachment length-backward-facing step 

Present Present Ref. 17 Ref. 24 Ref. 24 
Re FFT FD (a) (b) (4 

267 6.5 65 6 5  6.5 6.5 
467 9 1  9.1 9.3 9.3 8.7 

(a) 130 x 130 uniform mesh. 
(b) Experimental measurements. 
(c) 45 x 45 non-uniform mesh. 
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Figure 21. Streamwise velocity profiles at the midplane of the cavity, FDM solutions: (a) Re = 100; (b) Re = 400; 
(c) Re = loo0 

Comparisons between the FD and FFT methods are given in Figures 24,25 and 26, where we 
plot contours of streamfunction (obtained from the calculated velocity field), modified pressure 
and vorticity respectively. Figures 24 and 25 show that both the streamfunction and pressure 
results do not indicate any significant variance for both Reynolds numbers. 

Consequently, it can be asserted that although the FFT method performs poorly in the presence 
of solid boundaries, no detectable boundary errors are observed in treating the standard 
inflow/outflow boundary conditions with this method. However, solutions for the back-facing 
step problem do not lend any evidence to the superiority of the FFT method over the FD method, 
with the FFT method at a cost disadvantage owing to the extra log N operation count for equal 
numbers of grid points. 
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Figure 22. btreamwise velocity prohles at the midplane of the cavity, FFT solutions: (a) Re = 100, (b) Re = 400, 
(c)Re = lo00 

t' 

duldx-0 
v=o 

Figure 23. Schematic diagram of the back-facing step problem 
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I -.= \- a 

(4 
Figure 24. Streamfunction contours for the back-facing step: (a) Re = 267, FDM; (b) Re = 267, F m ,  (c) Re = 467, FDM; 

(d) Re = 467, FFT 

(b) 

Figure 25. (a. b) 
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(4 

Figure 25. Pressure contours for the back-facing step; notation as in Figure 24 

(4 

Figure 26. Vorticity contours for the back-facing step; notation as in Figure 24 
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5. CONCLUDING REMARKS 

In this work we investigated the applicability of the reduction-to-periodicity method using the 
FFT technique to numerically integrate several partial differential equations with non-periodic 
boundary conditions, including the two-dimensional, time-dependent Navier-Stokes equations. 
We now summarize some important aspects of this study: 

(1) Based on the numerical integration of model equations, the FFT method provides marginal 
improvement in accuracy over a corresponding second-order F D  method. At the bound- 
aries where the FFT method is expected to have poor accuracy, however, no serious 
degradation of solution accuracy is revealed. 

(2) When it is implemented for the driven-cavity problem with stationary and moving solid 
boundaries involving no-slip boundary conditions, the FFT method displays significant 
errors in the vicinity of the boundaries. These errors are most apparent in vorticity contours, 
displaying an oscillatory behaviour at moderately high Reynolds numbers, Re = 1OOO. 
Consequently, we do not recommend the FFT method along directions normal to solid 
boundaries. 

(3) In the back-step problem the FFT method resolves the standard inflow/outflow boundary 
conditions to the accuracy of the second-order F D  method. For both methods, even at 
moderately high Reynolds numbers, the calculated reattachment length is within a few per 
cent of measured values. Consequently, this method is applicable for problems with 
inflow/outflow boundary conditions of the type used in the backward-facing step problem, 
but the cost of using the FFT method over a second-order finite difference method for the 
problems investigated could not be justified. However, owing to minimum phase errors of 
the spectral discretization, the FFT method may prove to be feasible to implement in wave 
propagation problems with non-linear wave interactions, as suggested by the work of 
Patera.’ Even then, the application of this method to full-scale calculations can be justified 
only after it can furnish favourable comparisons with true spectral methods applicable to 
non-periodic inflow/outflow boundary conditions (see e.g. Macaraeg and Streett” and 
Patera26). This issue is currently under investigation. 
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